Theoretical Verification of Wagner’s Equation Considering Polarization Voltage Losses in SOFCs
نویسنده
چکیده
The necessity for experimental verification of leakage currents using Sm-doped ceria electrolytes (SDC) in solid-oxide fuel cells (SOFCs) has been indicated. This paper describes the theoretical limitations of Wagner's equation and details the analytical work that has been performed to support the experimental results. These limitations cannot be solved, even considering polarization voltage losses. Globally, there are several research groups working on SOFCs to solve the current-voltage relation with mixed ionic electronic solid conductors (MIECs). However, this problem must be solved considering the electric field (E) in MIECs. Thus, even though articles have already been published in similar areas, no approach has been taken within this body of work that considers the E in MIECs. In this report, a new calculation method considering E is expressed only from Wagner’s equation, with continuity expressed using the Choudhury and Patterson style. The calculated results match the values from conventional models. The constant field approximation is verified using the conventional definition of E. However, the definition of E should be changed when there is a large voltage drop in the thin area of the electrolyte compared with the lattice constant. In this study, the electric field near the cathode is sufficiently large to cause dielectric breakdown, which has never been reported.
منابع مشابه
Loss of Gibbs Energy Using Sm-Doped Ceria Electrolytes in SOFCs Considering Local Equilibrium while Ion Hopping
Using Sm-doped Ceria electrolytes (SDC) in SOFCs (solid oxide fuel cell), the open circuit voltage (OCV) becomes lower than the Nernst voltage (Vth), which is obtained using Yttria-stabilized Zirconia (YSZ) electrolytes. Classically, OCV is calculated with Wagner’s equation. However, experimental verification of leakage currents using SDC electrolytes is necessary, both qualitatively and quanti...
متن کاملTheoretical Verification Necessity of Leakage Currents Using Sm Doped Ceria Electrolytes in SOFCs
Numerous approaches have been made to solve the basic transport equation that describes a solid oxide fuel cell (SOFC) with mixed conduction. Classically, the open circuit voltage (OCV) is calculated with Wagner‘s equation, which is right within the limits of linear transport theory. In order to generalize Wagner’s equation, many models have been proposed to describe the current-voltage relatio...
متن کاملFundamental Thermodynamic Limitations in Wagner’s Equation in Solid State Electrochemistry
The use of samarium-doped ceria (SDC) electrolytes in SOFCs (solid oxide fuel cells) lowers the open circuit voltage (OCV) below the Nernst voltage (Vth), which is obtained using yttria-stabilized zirconia (YSZ) electrolytes. The OCV is classically calculated with Wagner’s equation. However, using SDC electrolytes requires both qualitative and quantitative experimental verification of leakage c...
متن کاملThe Industrial Necessity of Leakage Current Verification Using Sm Doped Ceria Electrolytes in SOFCs and Future Applications
The use of Sm-doped Ceria electrolytes (SDC) in SOFCs (solid oxide fuel cells) lowers the open circuit voltage (OCV) below the Nernst voltage (Vth) obtained using Yttria-stabilized Zirconia (YSZ) electrolytes. The OCV is classically calculated with Wagner’s equation. However, using the SDC electrolytes requires both qualitative and quantitative experimental verification of leakage currents. Fur...
متن کاملImproved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand
Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...
متن کامل